Posterior Localization of Dynein and Dorsal-Ventral Axis Formation Depend on Kinesin in Drosophila Oocytes
نویسندگان
چکیده
To establish the major body axes, late Drosophila oocytes localize determinants to discrete cortical positions: bicoid mRNA to the anterior cortex, oskar mRNA to the posterior cortex, and gurken mRNA to the margin of the anterior cortex adjacent to the oocyte nucleus (the "anterodorsal corner"). These localizations depend on microtubules that are thought to be organized such that plus end-directed motors can move cargoes, like oskar, away from the anterior/lateral surfaces and hence toward the posterior pole. Likewise, minus end-directed motors may move cargoes toward anterior destinations. Contradicting this, cytoplasmic dynein, a minus-end motor, accumulates at the posterior. Here, we report that disruption of the plus-end motor kinesin I causes a shift of dynein from posterior to anterior. This provides an explanation for the dynein paradox, suggesting that dynein is moved as a cargo toward the posterior pole by kinesin-generated forces. However, other results present a new transport polarity puzzle. Disruption of kinesin I causes partial defects in anterior positioning of the nucleus and severe defects in anterodorsal localization of gurken mRNA. Kinesin may generate anterodorsal forces directly, despite the apparent preponderance of minus ends at the anterior cortex. Alternatively, kinesin I may facilitate cytoplasmic dynein-based anterodorsal forces by repositioning dynein toward microtubule plus ends.
منابع مشابه
Polar Transport in the Drosophila Oocyte Requires Dynein and Kinesin I Cooperation
BACKGROUND The cytoskeleton and associated motors play an important role in the establishment of intracellular polarity. Microtubule-based transport is required in many cell types for the asymmetric localization of mRNAs and organelles. A striking example is the Drosophila oocyte, where microtubule-dependent processes govern the asymmetric positioning of the nucleus and the localization to dist...
متن کاملDrosophila PAT1 is required for Kinesin-1 to transport cargo and to maximize its motility.
Kinesin heavy chain (KHC), the force-generating component of Kinesin-1, is required for the localization of oskar mRNA and the anchoring of the nucleus in the Drosophila oocyte. These events are crucial for the establishment of the anterior-posterior and dorsal-ventral axes. KHC is also essential for the localization of Dynein and for all ooplasmic flows. Interestingly, oocytes without Kinesin ...
متن کاملAxis formation during Drosophila oogenesis.
Recent advances shed light on the cellular processes that cooperate during oogenesis to produce a fully patterned egg, containing all the maternal information required for embryonic development. Progress has been made in defining the early steps in oocyte specification and it has been shown that progression of oogenesis is controlled by a meiotic checkpoint and requires active maintenance of th...
متن کاملThe Cytoplasmic Dynein and Kinesin Motors Have Interdependent Roles in Patterning the Drosophila Oocyte
BACKGROUND Motor proteins of the minus end-directed cytoplasmic dynein and plus end-directed kinesin families provide the principal means for microtubule-based transport in eukaryotic cells. Despite their opposing polarity, these two classes of motors may cooperate in vivo. In Drosophila circumstantial evidence suggests that dynein acts in the localization of determinants and signaling factors ...
متن کاملDynein and the actin cytoskeleton control kinesin-driven cytoplasmic streaming in Drosophila oocytes.
Mass movements of cytoplasm, known as cytoplasmic streaming, occur in some large eukaryotic cells. In Drosophila oocytes there are two forms of microtubule-based streaming. Slow, poorly ordered streaming occurs during stages 8-10A, while pattern formation determinants such as oskar mRNA are being localized and anchored at specific sites on the cortex. Then fast well-ordered streaming begins dur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 12 شماره
صفحات -
تاریخ انتشار 2002